Homeowners Septic Plan Review Process

Gloucester County is required to follow the septic regulations set forth by the New Jersey Department of Environmental Protection, N.J.A.C. 7:9A.

We recognize that this can be a time sensitive process, so to avoid unnecessary delays, we urge you to make sure your Engineer submits a complete review package to our Engineer, CME. The septic application packet shall be emailed to CME for review to the following:

Ed D’Armiento edarmiento@cmeusa1.com, Liz Cooney ecooney@cmeusa1.com, and Judea Alexander jalexander@cmeusa1.com. Also CC Matt Olejarski molejarski@co.gloucester.nj.us and the applicant.

If the applicant is not copied, the application will be required to be re-submitted.

Payment will be submitted to GCHD in the form of a check or money order made payable to “The County of Gloucester”. Payment can be made via mail or hand delivery to the office. Septic permit applications will not be reviewed until the payment has been submitted to GCHD.

Our goal is to review new septic plans as soon as possible, within 7-10 business days of receipt of the septic application packet and payment. CME reviews plans in the order that they are received, and initial submissions will get reviewed before a re-submission is re-reviewed.

When your septic application packet has been reviewed and approved, CME will email out an electronic copy of the approved plans to the applicant, GCHD, the design Engineer, and the Municipal Construction Office. The design Engineer will then provide CME with two hard copies to be signed and sealed. CME will keep one copy and mail the second hard copy to the applicant at the address provided on the application.

If the septic application packet is denied, CME will reply all to the septic application packet submission email and outline the necessary revisions to gain approval. The design Engineer will need to make the necessary corrections and re-submit the septic application packet.

Once you receive your approved plans, please assure you check the permit conditions of approval sheet as that outlines of the onsite inspections and other documentation that will be required prior to a final License to Operate or Repair Approval letter being issued. A final License to Operate will be issued once the system has been installed and ALL required information has been submitted and reviewed. The job is not complete until this license to operate has been issued.
GLoucester County Department of Health
Application for Permit to Construct/Alter/Repair an Individual Subsurface Sewage Disposal System
Application shall be submitted electronically to CME for review by Design Engineer.
Payment shall be submitted to GCBD (check or money order only).
Onsite inspections must be scheduled via email: GCHD@cmeusa1.com

Municipality ____________________________

Form 1-General Information
1. Type of Permit Needed
 ___ New Construction ($350.00)
 ___ Alteration ($300.00) ___ Expansion/Change of use ___ Malfunction ___ No Expansion/Change of use
 ___ Repair In-Kind (Engineer required) ($135.00)
 ___ Revision ($175.00)
 - Garbage Disposal Incorporated: YES / NO
 - Ejector Pump Incorporated: YES / NO
 - Expansion Attic Incorporated: YES / NO

Property for Sale: YES / NO Settlement Date: ____________
In-Law Suite Incorporated: YES / NO Attached / Detached

2. Location of Project: Municipality ____________ Block ______ Lot ______
Street Address ________________________________ Zip ________

3. Name of Applicant (print)
 Present Address: __
 Applicant’s Phone Number: ________________________________
 Applicant’s Agent Name and Phone Number: _____________________
 Applicant’s Email address: ________________________________

4. Type of Facility:
 Residential: Number of Dwelling Units: ______ Number of Bedrooms ________ Duplex: Yes ________ No ________
 Commercial/Institutional: Specity Type of Establishment: ________________________________

5. Type of Wastes to be discharged:
 Sanitary Sewage___ Industrial Waste________ (NJDEP Approval required)
 Other-Specify: __

6. Water Supply: _____ Individual _____ Municipal If individual, will existing well be utilized? Yes ________ No ________

7. Other Approvals/Certification/Waivers/Exemptions (Attach to application)
 Pinelands Commission: Provide certificate of filing
 Municipal MUA Waiver/Municipal Ordinance Review Letter/Municipal Stamp on plans/Convenience Basement Bathroom
 NJDEP-Bureau of Flood Plain Management
 Other-Specify: __

8. I hereby certify that the information furnished on Form 1 of this application is true. I am aware that false swearing is a crime in this State and subject to prosecution.

Signature of Applicant ____________________________ Date _____________

For Agency Use Only
Application Denied-Reason for Denial: __

___ Application Approved ___ Application Approved Subject to Approval by: _______________________

Date of Action ____________ Signature __

MUNICIPALITY ________________________________

Form 2a-General Site Evaluation Data

1. Name of Site Evaluator (print):

2. Business Address:

3. Business Phone:

4. Special Site Limitations Identified (Check appropriate categories):
 - Flood Plains
 - Excessively Stony
 - Sand Dunes
 - Bedrock Outcrop
 - Disturbed Ground
 - Sink Holes
 - Steep Slopes
 - Wetlands
 - Other-Specify

5. Soil Logs-Enter on Form 2b-Use one sheet for each soil log.

6. Considerations Relating to Disturbed Ground:
 a) Type of Disturbance (Check appropriate categories)
 - Filled Area
 - Excavated Area
 - Re-Graded Area
 - Subsurface Drains
 - Other-Specify

 b) Pre-existing Natural Ground Surface
 - Elevation Relative to Existing Ground Surface
 - Method of Identification

 c) Suitability of Disturbed Ground
 - Unsuitable: Objects Subject to Disintegration or Change in Volume
 - Excessively Coarse
 - Proctor Test performed-% Standard Proctor Density =

7. Hydraulic Head Test:
 a) Hydraulically Restrictive Horizon: Depth Top to Bottom
 b) Piezometer A: Depth to Bottom
 - Depth of Water Level (24 hrs.)
 - Depth of Water Level (24 hrs.)
 c) Piezometer B: Depth to Bottom
 - Depth of Water Level (24 hrs.)

 d) Witnessed by ___________________________ Signature ___________________________ Date

8. Attachments (Check items included):
 - Site Plan
 - Key Map Showing Location of Site on U.S.G.S. Quadrangle or
 - Another Accurate Map
 - Key Map Showing Location of Site on U.S.D.A. Soil Survey Map
 - Other-Specify

9. I hereby certify that the information furnished on Form 2a of this application (and the attachments thereto) is true and accurate. I am aware that falsification of data is in violation of the Water Pollution Control Act (N.J.A.C. 5:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

 Signature of Site Evaluator ___________________________ Date

 Signature of Professional Engineer ___________________________ License #
MUNICIPALITY ________________________________

Form 2b - Soil Log and Interpretation

1. Log Number __________ Method (Check One): __________ Profile Pit __________ Boring

2. Soil Log

 Depth Munsel Color Name and Symbol; Estimated Textural Class; (inches) Estimated Volume % Coarse Fragment, If Present;

 Structure: Top-Bottom Moist or Dry Consistence; Mottling–Abundance, Size and Contrast, If Present

3. Ground Water Observations:

 Seepage-Indicate Depth

 Pit /Boring Flooded–Depth after ____________________________ Hours

4. Soil Limiting Zones (Check Appropriate Categories):

 Fractured Rock Substratum - Depth to Top
 Massive Rock Substratum - Depth to Top
 Excessively Coarse Horizon - Depth Top to Bottom
 Excessively Coarse Substratum - Depth to Top
 Hydraulically Restrictive Horizon - Depth Top to Bottom
 Hydraulically Restrictive Substratum - Depth to Top
 Perched Zone of Saturation - Depth Top to Bottom
 Regional Zone of Saturation - Depth to Top

5. Soil Suitability Classification:

6. I hereby certify that the information furnished on Form 2b of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58: 10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7: 14-8.

 Signature of Site Evaluator ____________________________

 Date ____________________________

 Signature of Professional Engineer ____________________________ License # ____________________________
MUNICIPALITY ____________________________

Form 3a. Soil Permeability Data

Lot Block

Assign a number for each test and a letter for each test replicate. Show test data and calculations on Form 3b, 3c, 3d, 3e, 3f or 3g. Use one sheet for each separate test or test replicate.

1. Summary of Date - Enter date for each test replicate on a separate line.

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Replicate (number)</th>
<th>Depth (inches)</th>
<th>Results*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For tube permeameter, pit-bailing and piezometer tests report results in inches per hour. For Soil permeability class rating give soil permeability class number. For percolation test report in minutes per inch. For basin flooding test report result as positive if basin drains completely within 24 hours after second filling, negative otherwise.

2. Design Permeability/Percolation Rate: Specify Test Number

Average of Test Replicates Single Replicate

Slowest of Replicates

3. Type of Limiting Zone Identified

Test Number

4. Attachments (Check items included):

Form 3b - Tube Permeameter Test Data - Number of Sheets
Form 3c - Soil Permeability Class Rating Test Data - Number of Sheets
Form 3d - Percolation Test Data - Number of Sheets
Form 3e - Pit-Bailing Test Data - Number of Sheets
Form 3f - Piezometer Test Data - Number of Sheets
Form 3g - Basin Flooding Test Data - Number of Sheets

5. I hereby certify that the information furnished on Form 3a of this application (and the attachments thereto) is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 10A:1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Site Evaluator ____________________________

Date ____________________________

Signature of Professional Engineer ____________________________ License # ____________________________
Form 3b. Tube Permeameter Test Data

1. Test Number ___________ Replicate (Letter) ________ Date Collected ____________

2. Material Tested ______ Fill _______ Test in Native Soil - Indicate Depth ________

3. Type of Sample: _______________ Undisturbed ____________ Disturbed

4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm ___________________________
 Length of Sample, L, in inches ______________________________

5. Bulk Density Determination (Disturbed Samples Only):
 Sample Weight (Wt. Tube Containing Sample - Wt. of Empty Tube), grams ______________
 Sample Volume (L x 2.54 cm./inch x 3.14R), cc ______________________________
 Bulk Density (Sample Wt./Sample Volume), grams/cc ______________________________

6. Standpipe Used: ___________ No _________ Yes
 --Indicate Internal Radius, cm

7. Height of Water Level Above Rim of Test Basin, in inches:
 At the Beginning of Each Test Interval, H ________________________________ at the End of Each Test Interval, H ________

8. Rate of Water Level Drop (Add additional lines if needed):
 Time, Start of Test ____________ Time, End of Test ____________ Length of Test Interval, T, Interval T1 Interval T2 minutes ____________
 __
 __
 __
 __
 __
 __
 __
 __
 __

9. Calculation of Permeability:
 K, (in/hr.) = 60 min/hr. x r /R x L(in)/T(min) x in (H /H)
 = 60 min/hr. x _______/____/____x____/____x____/____
 =

10. Defects in the Sample (Check appropriate items):
 _None _______Cracks _______Worm Channels _Root Channels
 Soil/Tube Contact ____________ Large Gravel ____________ Large Roots
 Dry Soil _______ Smearing _______ Compaction
 Other--- Specify

11. I hereby certify that the information furnished on Form 3b of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et. seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Site Evaluator ____________________________
Date ________________________________

Signature of Professional Engineer ____________________________ License # ____________________________
Form 3c. Soil Permeability Class Rating Data

1. Test Number ___________ Replicate (Letter) ___________

2. Sample Depth ___________ Soil Pit/Boring Number ___________ Date Collected ___________

3. Coarse Fragment Content:
 Total Weight of Sample, W.T., grams
 Weight of Material Retained on 2mm sieve, W.C.F., grams __________________________ Wt. % Coarse Fragment (W.C.F./W.T. x 100):

4. Oven Dry Weight (24 hrs., 105 C) of 40 Gram Air Dry Sample, grams, Wt.

5. Hydrometer Calibration, Rs

6. Hydrometer Reading – 40 seconds, grams, R1 __________________________ Temperature of Suspension, °F

7. Corrected Hydrometer Reading, grams, R1'

8. Hydrometer Reading – 2 hours, grams, R2 __________________________ Temperature of Suspension, °F

9. Corrected Hydrometer Reading, grams, R2'

10. % sand = (Wt. - R1')/Wt. x 100 = (_________ - ________)/ ________ x 100 =

11. % clay = R2'/Wt. x 100 = ____________________/ ________ x 100 =

12. Sieve Analysis:
 a. Oven Dry Wt. (2 hrs., 105 C) Total Sand Fraction
 (Soil Retained in 0.047 mm Sieve), grams
 b. Wt. of Fine Plus Very Fine Sand Fraction
 (Sand Passing 0.25 mm Sieve), grams
 c. % Fine Plus Very Fine Sand (b/a)

13. Soil Morphology (Natural Soil Samples Only):
 Structure of Soil Horizon Tested __________________________ Consistence of Soil Horizon
 Tested: Dry __________________________ Moist

14. Soil Permeability Class Rating (Based upon average textural analysis of this replicate and other replicate samples)

15. I hereby certify that the information furnished on Form 3c of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.
Form 3d. Percolation Test Data

1. Test Number ___________________ Replicate (Letter) __________ Date Tested

2. Depth

3. Pre-soak:
 Sandy Textured Soil Only, Shortened Pre-soak -- Indicate Time
 Required for 12 inches of Water to Drain After Second Filling, Minutes

 Four Hour Pre-soak Completed - Indicate Result:
 Test Hole Drained Within 16 to 24 Hours After Pre-soak
 Test Hole Did Not Drain Within 24 Hours After Pre-soak

4. Rate of Fall Data:
 a. Time Interval Selected, Minutes
 b. Record the Drop in Water Level During Each Time Interval to the Nearest
 1/10th - Inch on the Lines Below:

Depth of Water, Start of Interval (inches)	Depth of Water, End of Interval (inches)	Drop in Water Level (inches)

5. Percolation Rate:
 a. Time, minutes, Required for a Six-inch Drop in Water Level
 b. Percolation Rate = \(\frac{a}{6} \) = \(\frac{_______}{6} \) = _______ min/in

6. I hereby certify that the information furnished on Form 3d of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Site Evaluator Date ________________________

Signature of Professional Engineer _______________________ License # _______________
Form 3e. Piezometer Test Data

1. Test Number ____________ Reference Soil Log ____________ Date Tested

2. Diameter of Soil Auger, in. _______________ Depth of Test Hole, in _______________ Inside Radius of Pipe, R, in.

3. Depth to Apparent Static Water Level, in.

4. Measure and Record:

<table>
<thead>
<tr>
<th>Water Depth, Start of Interval,</th>
<th>Time at End of Interval, d</th>
<th>Water Depth, Time at End of Interval, t</th>
<th>Length of Interval, min, t</th>
<th>Start of Interval, End of Interval inches, d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Depth of Water Level After 24 Hour Stabilization Period, D ____________, in.

6. Value of A-parameter

7. Calculation of Permeability:

\[K, \text{in/hr.} = \left[(3.14R) (A x t) \right] \times \left[\frac{1}{n} \left(\frac{d - D}{d - D} \right) \right] \times 60\ \text{min/hr.} \]

\[= \left[(3.14 \text{___________}) / (x \text{___________}) \right] \times \left[\frac{1}{n} \left(\frac{\text{___________}}{\text{___________}} \right) \right] \times 60\ \text{min/hr.} \]

8. I hereby certify that the information furnished on Form 3e of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Site Evaluator __________________________ Date ____________________

Signature of Professional Engineer __________________________ License #
Form 3f. Pit-Bailing Test Data

1. Test Number ___________ Reference Soil Log ___________ Date Tested

2. Using the reference level established, measure and record the following:

--- Depth to Bottom of Pit, ft, D
--- Depth to Water Level after 2 hr. Stabilization Period, ft, D
--- Depth to Impermeable Stratum, ft, D (If depth is unknown assume it to
 be 1.5 times the depth of the pit.)
--- Height of Water Level Above Impermeable Stratum, ft, H
--- Length of Time Interval, T, in minutes

3. At the interval chosen, record the following data in the table below:

--- Time of Measurement, t, minutes
--- Depth of Water Level Below Reference Level, d, inches
--- Water Surface Dimensions, ft: law

4. Calculate the following values and enter in the table below:

--- Water Surface Area, ft, A
--- Water level Rise, h (Subtract current value of d from previous value)
--- Ave. Water Surface Area, ft, A (Take average of A and previous A)
--- Ave. Height of Water Level Above Impermeable Stratum, ft, h (Take aver of d and previous value of d, convert to ft, and subject from D)
--- Permeability, in/hr., K (Calculate using formula):

$$ K = \frac{h}{T} \times \left(A / 2.27 (H - h) \right) \times 60 \text{ min/hr.} $$

<table>
<thead>
<tr>
<th>t</th>
<th>d (in.)</th>
<th>law (ft.)</th>
<th>A (ft)</th>
<th>h (in.)</th>
<th>A (ft)</th>
<th>h (ft)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTINUED ON FOLLOWING PAGE
Form 3f. Pit-Bailing Test Data (continued)

5. Record the Following Data:

---Final Depth of Pit, D, ft
---Depth to Impermeable Stratum, ft, D ____________________________ (If no impermeable stratum is encountered assume D = D)
---Height of Standpipe Above Reference Level, ft, h
---Depth to Water Level after 24 hr. Stabilization Period, ft, D ___________ (Take measurement from top of standpipe. Subtract h)
---Height of Static Water Level Above Impermeable Stratum, ft, H ____________________________ (H = D - D)
---Average Height of Water Level Above Impermeable Stratum, ft, h ____________________________ (Take average of D from beginning and end of last time interval recorded in section 4, convert this to ft., subtract from D)

6. Re-calculation of K using data from section 5 above and from final time interval of section 4:

\[K = \frac{h}{t} \times A \times \frac{1}{2.27(H-h)} \times 60 \text{ min/hr.} \]

\[= \left[\frac{\text{Dep}}{\text{Set}} \right] \times \frac{1}{2.27} \times 60 \text{ min/hr.} = \]

7. I hereby certify that the information furnished on Form 3f of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Site Evaluator ________________________________ Date

Signature of Professional Engineer ______________________________ License #
Form 3g. Basin Flooding Test Data

1. Test Number ____________ Reference Soil Log ____________ Date Tested

2. Depth of Pit, ft

3. Area of Pit, ft

4. Description of Rock Substratum Within Test Zone:

 Type of Rock ___
 Name of Formation _______________________________________
 Average Fracture Spacing _________________________________

 Type of Fractures (Check Appropriate Category):
 Open (Wide), Clean -- Width of Openings, mm
 Open (Wide), Infilled with Fines -- Width of Openings, mm
 Tight (Closed) Orientation of Fractures:
 Horizontal (Parallel to Pit Bottom or Nearly So
 Inclined
 Vertical (Parallel to Sides of Pit) Or Nearly So
 Hardness of Rock:
 Ropable with Hand Tools
 Not Ropable with Hand Tools, Ropable by Machine
 Not Ropable by Machine, Explosives Used

5. Time of First Basin Flooding __
 Volume of Water Added, Gal.

6. Result of First Basin Flooding:
 Basin drained within 24 Hrs. -- Indicate Time:
 Basin Not Drained within 24 Hrs.

7. Time of Second Basin Flooding __
 Volume of Water Added, Gal.

8. Result of Second Basin Flooding:
 Basin Drained within 24 Hrs. -- Indicate Time
 Basin Not Drained within 24 Hrs.

9. I hereby certify that the information furnished on Form 3g of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Site Evaluator ____________________________ Date

Signature of Professional Engineer __________________________ License #
Form 4. General Design Data

1. Volume of Sanitary Sewage, gallons per day. _______________________ (200 gallons for first bedroom, 150 each additional)

 Residential: No. of Dwelling Units _______________________ Total No. of Bedrooms ____________

 Commercial/Industrial - Indicate type of establishment and show method of calculation.

2. Alterations or Repairs
 a) Reason for Alteration or Repair (Check appropriate categories):
 b) ____________ Describe Nature of Alteration or Repairs:

3. System Components:
 a) Grease Trap Capacity, gals _______________________ Show Calculation Used:
 b) Septic Tank Capacities, gals: ____________ First (Single) Compartment ____________ gal
 ____________ Second Compartment ____________ gal ____________ Third Compartment ____________ gal
 c) Effluent Distribution
 Method: ____________ Gravity Flow ____________ Gravity Dosing ____________ Pressure Dosing ____________
 Dosing Device: ____________ Pump ____________ Siphon
 d) Dosing Tank Capacities, gals: Total Capacity ____________________ Dose Volume ____________
 e) Laterals: Number _______________________ Total Length _________ Pipe Size _________ Spacing _________
 f) Connecting Pipe: Size _______________________ Length _______________________
 g) Manifold: Size _______________________ Length _______________________
 h) Disposal Field: Type of Installation _______________________

Design Permeability (Percolation Rate) ______________________ Trenches: Width ____________ Total Length _________

Bed: Area _______________________

I) Seepage Pits: Design Percolation Rate ______________________ Number of Pits _________

Total Percolating Area Provided _______________________

4. Attachments (Check items included):
 __ General Plan of System Showing Location of All System Components
 __ Cross-Sections of Each System Component Including Grease Trap, Septic
 __ Tank, Dosing Tank, Disposal Field, Seepage Pits and Interceptor
 __ Drains
 __ Pump Performance Curve
 __ Other -- Specify

 __ Convenience Waiver
 __ MUA Waiver
 __ Buoyancy Calculations
 __ Commercial Flow Calculations
 __ NJDEP Approvals

5. I hereby certify that the information furnished on Form 4 of this application (and attachments thereto) is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Professional Engineer ________________________ Date __________________
MUNICIPALITY ________________________________

Form 5. Design of Pressure Dosing System

1. Configuration of Distribution Network: Type of Manifold: __ End ___ Central
 Distribution Laterals: Number ______ Length(ft) ______ Spacing(ft)
 Hole Diameter(in) __________ Hole Spacing(in) __________ Diameter of Laterals(in)

2. Lateral Discharge Rate:
 Design Pressure Head at Supply End of Laterals, H, ft __________ Hole Discharge Rate, Q, gpm
 Number of Holes per Lateral, n __________ Lateral Discharge Rate, (Q x n) gpm

3. Manifold Length(ft) __________ Manifold Diameter(in) __________

4. System Discharge Rate, gpm

5a. Pump Section:
 Diameter of Delivery Pipe __________ Length of Delivery Pipe __________ Friction Loss in Delivery Pipe, H, ft
 Elevation of Dosing Tank Low Water Level __________ Elevation of Lateral Invert
 Elevation Head, H, ft
 Total Operating Head, H (H + H + H), ft __________ Pump Model ______ Rate Horsepower
 Pump Discharge Rate at Total Operating Head, gpm

5b. Siphon Elevation:
 Diameter of Delivery Pipe __________ Length of Delivery Pipe __________ Friction Loss in Delivery Pipe, H, ft
 Velocity Head, H, ft
 Total Operating Head, H (H + H + H) ft __________ Elevation of Lateral Invert
 Elevation of Siphon Invert

6. Dose Volume:
 Design Volume of Sewage, gal/day
 Design Permeability, in/hr. __________ or Percolation Rate, min/in __________ Interval Volume of Distribution Network
 Dose Volume

7. I hereby certify that the information furnished on Form 4 of this application (and attachments thereto) is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58: 10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Professional Engineer ________________________________ Date